Un-suppressing MI30 Dispersion function for Momentum Scraping

M.-J. Yang & D.E. Johnson

Criteria for a Scraper Location

- In the straight section
 - * Only from 301 to 305 is available.
- Non-zero Dispersion function.
 - * Use trim coils on IQC & IQD.
 - * Need power supplies.

MI30 quad configuration

Resulted dispersion function, ring-wide

$\Delta p/p$ of the scraped beam

Un-captured beam loss in MI

I:BEAM I:BEL I:LM634 I:HP634 Last Rad Survey @ 634 2R/hr

5550 hrs/year 5E11 loss/cycle @ acceleration

⇒4.5E18 lost at 9 Gev/year

⇒1992 PSAR limits 1E19/yr @ 8 Gev

MI Beam Loss upon Acceleration

MI-30 Dispersion Un-suppressor for 1.5 m at 302 location

Independent MAD solution with slightly different dispersion function.

Conceptual orbits through MI30

Want collimator to be the limiting momentum aperture => Assure this with closed orbit bump

Implementation

- Primary scraper at MI 302
 - * Secondary at 304.
- Ramp off
 - * Dispersion free.
 - * Emittance scraping, horizontal plane.
- Ramp on
 - * D.C. beam scraping during acceleration.
 - * Momentum scraping with coasting beam.

Work needed

- Evaluate MI momentum aperture
 - * Needed to determine the optimal dispersion at MI302.
- Beam loss simulation
- Power supply issue with EE-support
 - * Interference with main bus.
- Lattice
 - * Fine tune with MAD program.
 - * Beam measurements.